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Abstract 46 

Livestock overgrazing influences both microbial communities and nutrient cycling in 47 

terrestrial ecosystems. However, the role of overgrazing in regulating the relationship 48 

between soil biodiversity and nitrogen availability remains largely unexplored. We 49 

performed long-term grazing exclusion experiments across eight sites along 50 

precipitation gradient covering three major types of grassland in northern China to 51 

compare the linkage between soil microbial diversity and N availability in overgrazed 52 

versus non-grazed conditions. We found a significantly positive association between 53 

fungal diversity and soil available N in non-grazed grasslands. However, the positive 54 

association was absent in overgrazed environments. Bacterial diversity is not related 55 

to soil available N in either non-grazed or overgrazed grasslands. Moreover, in 56 

bacterial community, we found a positive link between the relative abundance of 57 

Actinobacteria with soil available N in non-grazed, but not overgrazed, grasslands. 58 

Instead we found the links between relative abundance of Bacteroidetes and 59 

Acidobacteria with soil available N in overgrazed grasslands, but not non-grazed, 60 
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grasslands. Our work provides evidence that the relationships between microbial 61 

diversity and ecosystem functions are context-dependent, and so microbial 62 

community diversity is likely not the major driver of soil N mineralization in 63 

overgrazed grasslands. Our study suggests that high intensity anthropogenic activities 64 

in grasslands restrains the capacity of diverse soil microbial communities to sustain 65 

ecosystem function, and more broadly the capacity of entire ecosystems to maintain 66 

important ecosystem processes such as plant production. Our study also indicates that 67 

the fundamental microbial communities associated with N availability change with 68 

differing land management strategies (e.g. livestock grazing). 69 

Keywords：Soil microbial diversity, grazing management, grassland N cycling, 70 

herbivore grazing, land-use intensification 71 

 72 

Introduction 73 

Livestock grazing is one of the most widespread forms of intensive resource 74 

management on Earth and plays a fundamental role in food production. However, 75 

overgrazing is also one of the most pervasive and significant processes that degrades 76 

grassland (Eldridge & Delgado-Baquerizo 2017), especially in northern China, where 77 

90% of grasslands have been overgrazed and thus degraded (Kemp et al. 2013).  78 

Soil nitrogen (N) is one of the most limiting factors and important drivers of 79 

ecosystem productivity in terrestrial ecosystems (Schlesinger 1996). Soil microbes 80 

support critical processes associated with N cycling and are also among the most 81 

abundant and diverse organisms on earth. There is growing evidence that herbivore 82 

grazing can alter the community composition and diversity of belowground soil 83 

microorganisms (Bardgett et al. 2001; Yang et al. 2013; Peschel et al. 2015; Cline et al. 84 

2017; Eldridge et al. 2017). A growing number of studies also suggest that greater 85 

microbial diversity can enhance the rapid breakdown of litter derived from 86 

aboveground plant matter, increasing soil organic matter content and nutrient 87 

availability (van der Heijden et al. 1998; Wardle et al. 2004; Gessner et al. 2010). 88 

Degrading complex and recalcitrant polymers into simpler and more labile monomers 89 

requires the cooperation of a large and diverse group of microorganisms (Hooper et al. 90 
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2000; Wardle et al. 2004; Schimel et al. 2005; van der Heijden et al. 2008). Much less 91 

is known, however, about the potential impacts of livestock overgrazing on the 92 

linkage between soil biodiversity and N availability.  93 

Livestock grazing may directly and indirectly affect below-ground properties 94 

(Bardgett & Wardle 2003). For example, herbivore trampling can directly change soil 95 

structure or permeability (Gass & Binkley 2011; Schrama et al. 2013). Plant 96 

consumption by herbivores and dung and urine deposition can affect the quantity and 97 

quality of resources that are returned to the soil (Ruess & Seagle 1994; Frank & Evans 98 

1997; Frank et al. 2002; Bakker et al. 2004). All these changes can affect soil nutrient 99 

cycling (Augustine et al. 2003; Bakker et al. 2009; Wang et al. 2019) and the activity 100 

and abundance of soil organisms (Bardgett & Wardle 2003). Notably, different soil 101 

microbial taxa could vary in their response to changes in soil environment such as 102 

temperature and pH (Laanbroek & Woldendorp 1995; Stark & Firestone 1996), so 103 

those changes resulting from herbivore grazing could also alter the effects of 104 

microbial community diversity on soil N mineralization. Assessing the robustness of 105 

soil biodiversity-N availability relationships in highly managed grasslands is believed 106 

necessary for predicting ecosystem response to the ongoing global land use 107 

intensification.  108 

Here, we tested the potential effects of overgrazing by livestock (cattle and sheep, 109 

etc.) on the relationship between soil microbial diversity and nitrogen availability by 110 

using an experimental approach with multiple grazing exclosures in arid and semiarid 111 

grassland ecosystems across northern China, which contains the largest remaining 112 

grassland on Earth. We hypothesized that soil biodiversity is positively associated 113 

with nitrogen availability for plants, but also that overgrazing by livestock can disrupt 114 

relationships between soil microbial diversity and nitrogen cycling.  115 

 116 

Materials and Methods 117 

Sampling sites  118 

The study area was located in temperate grasslands of the Inner Mongolian Plateau in 119 

Northern China (111.23 E to 120.10 E, 41.25 N to 49.64 N), where the climate is 120 
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predominantly arid and semi-arid continental; Mean annual precipitation ranged from 121 

224 mm to 397 mm and mean annual air temperature ranged from -2.1°C to 3.5°C. To 122 

generate enough variability to test the link between microbial diversity and function, 123 

we selected three different types of grasslands along this transect from east to west: 124 

meadow steppe, typical steppe and desert steppe. A total of eight sites with livestock 125 

overgrazing and with various dominating plant species were selected along this 126 

transect, including three meadow steppes, three typical steppes and two desert steppes 127 

(Fig. S1; Supporting Information Table S1). Within each site a long-term grazing 128 

exclosure was established in an area with a history of long-term heavy grazing and 129 

where more than 90% of the annual aboveground productivity was consumed. 130 

Livestock were excluded via the exclosure for over five years at each of the eight sites. 131 

The differences between the grassland structure inside and outside the exclosure were 132 

great (Fig. S2). For one, plant height was extremely and significantly lower in the 133 

overgrazed than in the non-grazed grasslands (inside the exclosure) (Fig. S3; Table 134 

S3).  135 

Field sampling and measurements 136 

Plant and soil sampling were carried out during the summer (late July to August) of 137 

2016, corresponding to annual peak-standing biomass. At each site, a 14 m × 14 m 138 

plot was selected randomly, and five 0.5 m × 0.5 m quadrats were set at the four 139 

corners and the center of the plot. Above-ground biomass was clipped at the ground 140 

level and oven dried at 65°C for 48 h. Then it was weighed and ground into a fine 141 

powder on a ball mill for plant community nitrogen analyses. Nitrogen content was 142 

measured using the CHNOS Elemental Analyzer (vario EL cube). 143 

Soil samples were collected by taking three soil cores (2.5-cm diameter) at 10 cm 144 

depth in each of the five 0.5 × 0.5 m quadrats at one site. The three soil cores were 145 

mixed in situ to form one composite sample representing each quadrat. After 146 

removing the rocks and roots, the soil was passed through a 2-mm-mesh sieve and 147 

separated into two parts. One part was air-dried and used to determine soil pH, which 148 

was measured in a 1: 2.5 (soil: water) suspension. The other part was kept in a freezer 149 

(MOBICOOL CoolFreeze CF-50) to maintain a temperature of -18°C and carried 150 
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back to the laboratory as soon as possible for soil microbial community analysis and 151 

available nitrogen analysis. Soil NH4
+ and NO3

- were analyzed using an Alliance Flow 152 

Analyzer (Alliance Flow Analyzer, Futura, frépillon, France). Soil available N was 153 

determined as the sum of ammonium and nitrate. 154 

Microbial community analyses 155 

Microbial DNA was extracted from soil samples using the PowerSoil DNA Isolation 156 

Kit (Mo Bio Laboratories, Carlsbad, CA, USA) according to the manufacturer’s 157 

protocols. The final DNA concentration and purification were determined by the 158 

NanoDrop 2000 UV-vis spectrophotometer (Thermo Scientific, Wilmington, USA). 159 

Bacterial communities were assessed with primers 338F 160 

(5’-ACTCCTACGGGAGGCAGCAG-3’) and 806R 161 

(5’-GGACTACHVGGGTWTCTAAT-3’), targeting the V3–V4 regions of the 16S 162 

rRNA gene. Fungal communities were assessed using the forward primer ITS-1F 163 

(5’-CTTGGTCATTTAGAGGAAGTAA-3’) and the reverse primer ITS-2R 164 

(5’-GCTGCGTTCTTCATCGATGC-3’). The PCR reactions were conducted using the 165 

following program: 3 min of denaturation at 95 °C, 27 cycles (bacterial) or 35 cycles 166 

(fungal) and 30 s at 95 °C, 30 s at 55 °C for annealing, 45 s at 72 °C for elongation, 167 

and a final extension at 72 °C for 10 min. PCR reactions were performed in triplicate 168 

20 μL mixture containing 4 μL of 5 × FastPfu Buffer, 2 μL of 2.5 mM dNTPs, 0.8 μL 169 

of each primer (5 μM), 0.4 μL of FastPfu Polymerase and 10 ng of template DNA. 170 

The resulting PCR products were extracted from a 2% agarose gel, further purified 171 

using the AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, Union City, CA, 172 

USA) and quantified using QuantiFluor™-ST (Promega, USA) according to the 173 

manufacturer’s protocol. Purified amplicons were pooled in equimolar and paired-end 174 

sequences on an Illumina MiSeq platform (Illumina, San Diego, USA). 175 

The MiSeq sequences were demultiplexed and quality-filtered by Trimmomatic on 176 

the criteria of having an average quality score higher than 20 over a 50 bp sliding 177 

window. Sequences whose overlap was longer than 10 bp were merged according to 178 

their overlap sequence. After removing the reads containing ambiguous bases, 179 

paired-end reads with at least a 10 bp overlap were joined using FLASH and allowing 180 
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for 2 mismatched nucleotides. Operational taxonomic units (OTUs) were clustered 181 

with a 97% similarity cutoff using UPARSE (Edgar 2013). Singleton OTUs were 182 

removed as well as the chimeric sequences identified by the UCHIME algorithm. The 183 

taxonomy of each 16S rRNA gene sequence was analyzed with the RDP Classifier 184 

(Wang et al. 2007) against the Silva (SSU123) 16S rRNA database using a confidence 185 

threshold of 70%. 186 

For each taxonomic group analysed, samples were rarefied to compare all samples 187 

at equivalent sequencing depths corresponding to the lowest sequencing coverage. 188 

Rarefied data was used to calculate Shannon diversity for these groups. Nitrification 189 

plays a key role in determining how much and which forms of soil inorganic N are 190 

available for plants. We also calculated the relative abundance of different bacterial 191 

phylum. 192 

Statistical analysis 193 

We firstly run general linear mixed models (GLMMs) including grazing and microbial 194 

diversity as predictor variables, and grassland type as random factor to analyze the 195 

interactive effects of grazing and microbial diversity on soil available N, which help 196 

examine whether grazing significantly affected the relationship between microbial 197 

diversity and soil available N. Further, we explored the relationship between soil 198 

microbial diversity, as estimated with the Shannon index (Haegeman et al. 2013), and 199 

soil N availability using two approaches (regression models and linear mixed models) 200 

across eight non-grazed and eight overgrazed grasslands, respectively. First, we fitted 201 

OLS regression models to show the relationship between microbial diversity and soil 202 

N. Great variation was found among the five sampling replication points within each 203 

site/plot, and spatial dependency for the soil variables often disappeared after a few 204 

centimeters (e.g., Delgado-Baquerizo et al. 2013). Thus, the five replications within 205 

each site were considered as individual observations in the analyses (n=40). Secondly, 206 

to further examine whether the relationship between microbial diversity and soil 207 

available N was driven by cross-grassland types difference, we fitted linear mixed 208 

models to individual site/plot-level data using the site/plot means, i.e. means of the 209 

five sampling replication within each site/plot (n=8). Linear mixed models employed 210 
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restricted maximum likelihood estimation, and included grassland types as a random 211 

factor, and microbial diversity as fixed factor. Moreover, we re-fitted linear mixed 212 

models to individual soil sampling level data, i.e the five replications within each site 213 

were considered as individual observations in the analyses (n=40). We found the 214 

consistent result from the two fitted linear mixed models so, for simplicity, present 215 

only the linear mixed models based on individual soil sampling level data. To check 216 

the accuracy of soil available N, which was only measured once during the peak 217 

growing season to reflect annual N availability to plants, we further analyzed the 218 

relationship of soil available N with plant community N. 219 

Soil pH is globally the most important predictor of microbial diversity and N 220 

availability (Lauber et al. 2008, 2009; Delgado-Baquerizo et al. 2016a), and therefore, 221 

any assessment of the linkages between microbial diversity and function need to 222 

control for soil pH. We therefore used SEM to evaluate the direct and indirect effects 223 

of soil microbial diversity and soil pH on soil available nitrogen and plant community 224 

nitrogen content. We fitted separate SEMs for non-grazed and overgrazed grasslands. 225 

The analysis was performed on standardized variables (deviation from mean / 226 

standard deviations), and we quantified direct and indirect effects as standardized path 227 

coefficients. Our structural equation modeling was carried out using the sem function 228 

of the lavaan package (Rosseel 2012) in R (version 3.4.3, R Developmental Core 229 

Team 2017). The performances of the SEMs were evaluated using a combination of 230 

the chi-square statistic (where 0≤ χ2 ≤ 2 df and P > 0.05 indicate a good fitting 231 

model), Bentler’s comparative fit index (CFI, where CFI > 0.95 indicates a good 232 

fitting model) and the standardized root mean square residual (SRMR; where SRMR 233 

≤ 0.08 indicate a good fitting model).   234 

 235 

Results 236 

The results from GLMMs showed that there was significant interactive effect of 237 

grazing and fungal diversity not bacterial diversity on soil available N, indicating that 238 

grazing significantly altered the association between fungal diversity and soil 239 

available N (Table 1). Further, the results from regression models showed that soil 240 
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fungal diversity was significantly and positively related to soil available nitrogen in 241 

non-grazed grasslands, while this relationship was absent in overgrazed grasslands 242 

(Fig. 1a, b). There was not any significant correlation between bacterial diversity and 243 

soil available N in either non-grazed or grazed grasslands (Fig. 1c, d). However, in the 244 

bacterial community, we found a positive link between the relative abundance of 245 

Actinobacteria with N availability in non-grazed, but not overgrazed, grasslands (Fig. 246 

2a, b). Instead we found the links between the relative abundance of Bacteroidetes and 247 

Acidobacteria with soil N availability in overgrazed grasslands, but not non-grazed, 248 

grasslands (Fig. 2c, d, e, f). The results from GLMMs also showed that there were 249 

significant interactive effects of grazing and the relative abundance of Actinobacteria 250 

Bacteroidetes and Acidobacteria on soil available N (Table 1). The results from linear 251 

mixed models including grassland types as a random factor were consistent with that 252 

of all the regression models (Table S2), indicating that these relationships did not 253 

result from the cross-grassland type difference. Soil available N was significantly and 254 

positively related to plant community N in both non-grazed and overgrazed grasslands 255 

(Fig. 3), indicating that the soil available N during the peak growing season was a 256 

valid proxy for annual N availability in this study.  257 

We adopted SEM to further examine the direct and indirect effects of fungal 258 

diversity on soil and plant N content when controlling for soil pH, which is the most 259 

widely acknowledged soil factor affecting N mineralization in soil. We ran separate 260 

models for overgrazed and non-grazed locations. Our SEMs explained 21% and 35% 261 

of the variance found in the soil available nitrogen of non-grazed and overgrazed 262 

grassland data sets, respectively (Fig. 4). In non-grazed grasslands, we still found a 263 

direct positive effect of fungal diversity on soil nitrogen (Fig. 4a). However, such an 264 

association was lost in overgrazed grasslands (Fig. 4b).  265 

Discussion 266 

To our knowledge, this study provides the first empirical evidence that 267 

human-initiated overgrazing can disrupt the positive associations between microbial 268 

diversity and soil N mineralization, and thus the levels of plant-available N. Such a 269 

result suggests that as grazing by livestock continues to increase in order to feed a 270 
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growing human population, the important associations between soil biodiversity and 271 

N availability could be weakened, or even disappear.  272 

Specifically, we found that fungal, and not bacterial, diversity is strongly related to 273 

soil N availability across arid and semi-arid grasslands in northern China, and this 274 

relationship was not driven by cross-grassland type difference. Our finding concurs 275 

with a global study providing similar results across 78 global drylands 276 

(Delgado-Baquerizo et al. 2016b). Fungi are generally more tolerant of desiccation than 277 

bacteria, which might explain the importance of these organisms in arid and semiarid 278 

ecosystems (Austin et al. 2004). Notably, livestock overgrazing disrupted the positive 279 

link between fungal diversity and soil available N, though there was little statistically 280 

significant difference in soil available N and microbial diversity between non-grazed 281 

and overgrazed grasslands across all the sites (Table S3; Fig. S4). While the 282 

relationship between microbial community diversity and soil N cycling has been 283 

demonstrated in natural ecosystems in many studies (Schimel et al. 2005; Reed & 284 

Martiny 2007; Graham et al. 2014; Wagg et al. 2014; Delgado-Baquerizo et al. 2017), 285 

our study indicates that the link between microbial diversity and soil N cycling is 286 

context-dependent, and that microbial community diversity is likely not the primary 287 

driver of soil N mineralization in widely overgrazed grasslands.  288 

Soil N mineralization could be predominantly controlled by particular microbial taxa 289 

in overgrazed grasslands instead of by microbial community diversity. We found, in 290 

bacterial communities, the strong relationships between the relative abundance of 291 

Actinobacteria and soil N availability which was found in non-grazed grasslands also 292 

disappeared in overgrazed grasslands. Actinobacteria was the dominant bacterial 293 

phylum here. Actinobacteria are defined as oligotrophs (Bastian et al., 2009; Trivedi et 294 

al. 2013), containing a broad array of genes that allow the breakdown and utilization of 295 

recalcitrant organic compounds that can be used under low carbon, such as lignin, 296 

chitin and cellulose (Maestre et al. 2015; Delgado-Baquerizo et al. 2017). In 297 

overgrazed grasslands alone, the relatively high abundance of Bacteroidetes, defined as 298 

copiotrophic organisms by Fierer et al (2007), and the low abundance of Acidobacteria 299 

was strongly related to soil available N. These findings suggest that the fundamental 300 
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microbial communities associated with N availability change with differing land 301 

management strategies (grazed vs. non-grazed grasslands). Nevertheless, we did not 302 

get the actual abundance of these microbial groups. The relationships between soil 303 

available N and the actual abundance of the microbial groups could differ from the 304 

relative abundance, which need be further explored in future study.  305 

We suggest that the grazing-induced improvement in the quality of resources 306 

entering the soil could reduce the requirement for the cooperation of a large and 307 

diverse group of microorganisms, such as fungi and Actinobacteria in this study. 308 

Herbivory can induce an increase in root exudation and hence the amount of labile C 309 

entering the soil (Hamilton & Frank 2001). Such physiological responses to herbivory 310 

have been suggested to represent an important mechanism for increasing nutrient 311 

availability in natural ecosystems (Hamilton & Frank 2001). Moreover, conversion of 312 

plant tissue into herbivore dung and urine results in the return of readily available 313 

elements to soil pools. Animal excreta are deposited (dung and urine) in the process of 314 

grazing and are thought to have major effects on soil N availability (Mikola 2009). 315 

Also, herbivory leads to an increase in fast-growing plants of high quality 316 

(McNaughton 1979; Bakker et al. 2009), which can also yield decomposed easily 317 

litter. Thus, Fungi and Actinobacteria may be less competitive or less necessary in 318 

soils with higher labile carbon resulting from herbivore grazing. Bardgett et al. (2001) 319 

also found that soil microbial communities of heavily grazed sites are dominated by 320 

bacterial-based energy channels of decomposition and that fungi have a proportionally 321 

smaller role. Therefore, with fewer recalcitrant organic compounds in the soil, a 322 

highly diverse microbial community may not be necessary, though this should be 323 

further examined in future studies. 324 

Herbivores also have substantial impacts on below-ground processes via changes in 325 

key soil properties. High grazing intensity commonly results in harsh soil 326 

environment conditions, such as increased soil compaction, reduced aeration 327 

(Milchunas & Lauenroth 1993; Eldridge et al. 2016) and increased or decreased soil 328 

pH (Smolik et al. 1972; Yong-Zhong et al. 2005) due to trampling and the removal of 329 

vegetation. Soil pH was found to be one of most important factors affecting soil N 330 
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mineralization on a global scale (Li et al. 2019). Microbial diversity and composition 331 

have been shown to be influenced by soil pH (Fierer et al. 2007; Rath & Rousk 2015), 332 

and thus changes in pH resulting from livestock grazing may indirectly affect 333 

microbial community diversity and thereby soil N mineralization. Moreover, soil pH 334 

was found to have considerable direct negative impacts on soil N mineralization by 335 

changing soil metabolic and enzymatic activities (Li et al. 2019), which could also 336 

alter the way in which soil microbial diversity relates to soil N mineralization. For 337 

instance, the activity of urease and some protease decreased as soil pH increased 338 

(Singh & Nye, 1984; Kamimura & Hayano, 2000). Our results from the SEMs 339 

showed that soil pH had an important direct negative impact on soil available N in 340 

overgrazed grasslands, and that soil pH directly explained 58% of soil available N 341 

(Fig. 4). Therefore, grazing-induced changes in soil pH could prohibit the direct 342 

effects of some microbial taxa on soil N mineralization by changing their enzymatic 343 

activities. Consistently, Delgado-Baquerizo et al. (2017) suggests that the positive 344 

effects of particular microbial taxa on multifunctionality resistance could potentially 345 

be controlled by altering soil pH. Our study also indicated that soil abiotic factors 346 

instead of soil organisms may play the predominant role in controlling soil N 347 

availability in grasslands that have high intensity grazing disturbances. 348 

In conclusion, our data shows that the biodiversity of Fungi not bacteria was 349 

positively correlated with soil nitrogen availability in arid and semiarid grassland 350 

ecosystems across northern China, and that overgrazing by livestock can disrupt this 351 

important association. Our study also indicates that the link between microbial 352 

community diversity and soil N cycling is context-dependent, likely depending on the 353 

quality of both the soil substrate and the soil physical environment (e.g. pH). Currently, 354 

most of grasslands are facing degradation and desertification worldwide. Thus, 355 

understanding the relationship between microbial diversity and nitrogen cycling in 356 

terrestrial ecosystems during the Anthropocene has fundamental implications for 357 

managing grasslands under global change scenarios. Our study suggests that high 358 

intensity grassland disturbance by anthropogenic activity could not only reduce the 359 

biodiversity in ecosystems (Bardgett et al. 2001; Allan et al. 2014; Eldridge et al. 2016), 360 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



 

This article is protected by copyright. All rights reserved 

but it may also restrain the capacity of soil microbial diversity to sustain ecosystem 361 

function. More broadly, ecosystems may be unable to maintain important ecosystem 362 

processes such as plant production.  363 
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 571 

 572 

Table 1. Summary of general linear mixed models (GLMMs) analyzing the interactive 573 

effects of grazing and microbial diversity on soil available N. Grazing and microbial 574 

diversity were taken as predictor variables, and grassland type was taken as random 575 

factor. The GLMMs were run for fungal diversity, bacterial diversity, and the relative 576 

abundance of Actinobacteria, Bacteroidetes and Acidobacteria, respectively. 577 
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 588 

Figure 1 589 

Variable Estimate Std. Error z-value p-value 

Fungal diversity: Grazing -0.167 0.079 -2.098 0.036 

Bacterial diversity: Grazing 0.365 0.274 1.333 0.183 

Actinobacteria abundance: Grazing -4.832 1.036 -4.662 <0.001 

Bacteroidetes abundance: Grazing 39.525 5.921 6.675 <0.001 

Acidobacteria abundance: Grazing -5.018 1.247 -4.024 <0.001 
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 590 

Figure 1. Relationships between soil fungal, bacterial diversity and soil available 591 

N (mg/kg) across non-grazed (a, c) and overgrazed grasslands (b, d). The fitted 592 

lines are from the OLS regression. Shaded areas show the 95% confidence interval of 593 

the fit. DS-desert steppe; MS-meadow steppe; TS-typical steppe. 594 
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 601 

Figure 2. Relationships between the relative abundance of different microbial 602 

groups (Actinobacteria, Bacteroidetes, Acidobacteria) and soil available N 603 

(mg/kg) across non-grazed (a, c, e) and overgrazed grasslands (b, d, f). The fitted 604 

lines are from the OLS regression. DS-desert steppe; MS-meadow steppe; TS-typical 605 

steppe. 606 

Figure 3 607 
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 608 

Figure 3. Relationship between soil available N (mg/kg) and plant community N 609 

content (%) across non-grazed and overgrazed grasslands. The fitted lines are 610 

from the OLS regression. DS-desert steppe; MS-meadow steppe; TS-typical steppe. 611 
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Figure 4 623 
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 627 

 628 

Figure 4. Structural equation models with soil pH and fungal diversity as 629 

predictors of soil available N and plant community N content for non-grazed (a) 630 

and overgrazed (b) grasslands. Green and red solid arrows indicate positive and 631 

negative effects, respectively, and grey arrows indicate nonsignificant paths. The 632 

thickness of the arrows reflects the magnitude of the standardized SEM coefficients. 633 

There was non-significant deviation of the data from the models (non-grazed: 634 

CFI=0.997; P=0.359; overgrazed: CFI=0.985; P = 0.278). 635 
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SUPPORTING INFORMATION 642 

Additional supporting information may be found in the online version of this article. 643 

Table S1. Characteristics of the geographic, climatic and plant variables at the study 644 

sites. 645 

Table S2.  Summary of linear mixed models analyzing the effects of fungal diversity, 646 

bacterial diversity, and the relative abundance of Actinobacteria, Bacteroidetes and 647 

Acidobacteria on soil available N in non-grazed grasslands and overgrazed grasslands.  648 

Table S3. Summary of linear mixed effects model analyzing the overall effects of 649 

grazing on plant height, soil available N, fungal diversity, and bacterial diversity.  650 

Figure S1. Distribution of sampling sites in northern China. 651 

Figure S2. Vegetation contrast inside and outside exclosures in the three grassland 652 

types. 653 
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Figure S3. Difference in vegetation height inside (non-grazed) and outside 654 

(overgrazed) exclosure at eight sites. 655 

Figure S4. Difference in soil available N and microbial diversity inside (non-grazed) 656 

and outside (overgrazed) exclosure at eight sites in three grassland types.  657 
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